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SUMMARY

Upwind schemes are evaluated with respect to their spectral accuracy in solving advection–diffusion
equations. Their connection to large eddy simulations (LES) and direct numerical simulations is explored.
Some broad guidelines are set forth to select an appropriate scheme for simulating a Navier–Stokes
equation with or without a subgrid-scale model. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of higher-order upwind schemes to solve the Navier–Stokes equation has seen an
upsurge in recent times following the early success of Kawamura et al. in predicting the drag
crisis faced by a circular cylinder in the critical Reynolds number range [1]. Similar successes
have also been noted by the present authors in simulating high-Reynolds number flows past
various two-dimensional bodies in Sengupta and Sengupta [2], Nair and Sengupta [3] and
Sengupta and Nair [‘Unsteady flows past two-dimensional lifting bodies’ (under review for Int.
J. Numer. Methods Fluids, 1999)].

Various interpretations have been forwarded over the years to explain the success of this
particular scheme and other higher-order upwind schemes. In this work, we have attempted to
generalize the explanations given earlier in Sengupta and Sengupta [2]. In view of this, we also
discuss the various compact different schemes that have been proposed by Lele [4] and the
various filters that are used in large eddy simulations (LES) and discussed in Spyropoulos and
Blaisdell [5].

In Sengupta and Sengupta [2] and Schumann [6] it was mentioned that discretizing the
continuum Navier–Stokes equation is equivalent to introducing an appropriate low-pass filter.
It is now well known that the success of high-Reynolds number flow simulations rests
predominantly on the way the convection terms are discretized. These are done according to�
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for the third-order upwinding schemes used in Kawamura et al. [1] and Sengupta and
Sengupta [2].

Now, if we represent the unknown by its spectral representation
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then the exact spectral representation of the derivative is given by
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−ikû(k) exp(−ikx) dk. (3)

When we represent the same derivative by finite differences—as we have shown in Equation
(1)—the discrete derivative can be written as

du
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=
& kmax

−k max

−ikeqû(k) exp(−ikx) dk, (4)

where kmax=p/Dx is fixed by the Nyquist criterion. Thus, in the finite difference solution of
the Navier–Stokes equation one introduces a filter implicitly if keq in Equation (4) is different
to k. Thus, the performance parameter would be keq/k as plotted against (kDx). Ideally, for a
good numerical scheme this will be equal to a value in the permissible range of the
wavenumber—as is the case of the spectral method. This parameter was shown in Figures 15
and 16 of Sengupta and Sengupta [2] and Figure 2 of Nair and Sengupta [7] for various
upwind and central schemes. Some of the major schemes are reproduced here in Figure 1
showing only the real part of keq/k for the upwind schemes. In this figure, the compact
difference (CD) schemes that were used by Lele [4] are also shown along with the third- and
fifth-order upwind scheme. In the CD schemes, the first derivatives are also treated as
unknowns and a set of implicit relations are used to relate the unknowns and their derivatives.
Any upwind scheme is equivalent to the next higher-order central difference scheme to which
a higher-order numerical dissipation is added implicitly. The capability of a numerical scheme

Figure 1. Equivalent non-dimensional phase of third- and fifth-order upwind scheme and sixth- and eighth-order CD
scheme versus k �Dx.
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Figure 2. Plot of keq�Dx versus k �Dx for the third- and fifth-order upwind and sixth- and eighth-order CD schemes.
Also shown is the exact spectral representation.

to simulate high-Reynolds number flows, where a large range of spatio-temporal scales are
excited, is directly related to the performance and bandwidth of the filter.

It is often stated (see Schumann [6]) that when the Navier–Stokes equation is solved by a
finite difference scheme the filter removes all subgrid scales smaller than the mesh spacing with
spatial resolution. This is an exaggeration, as we shall show later, as the discretization also
brings in phase error that effectively reduces the maximum wavenumber from its theoretical
maximum value of kmax. This was shown as Figure 1 in Lele [4], which revealed that the higher
wavenumbers are weighted by a smaller value than the actual wavenumber value in Equation
(4), as depicted by the folding of keq to the right of the maximum of the curve and the subgrid
scale is determined by the modified maximum wavenumber. Note that the abscissa in that
figure is already multiplied by the mesh spacing. In Figure 2 we have shown the correct
depiction. In the Figure 15 and 16 of Sengupta and Sengupta [2], the real part represents the
phase portrait of Equation (2) and the imaginary part of keq attenuates the higher wavenum-
bers. This imaginary part is necessary for numerically stabilizing the solution of the Navier–
Stokes equation at a high Reynolds number. Note that some of the spectral DNS procedures
add explicitly dissipation terms proportional to the biharmonic terms—which are known as
hyperviscosity terms.

Compared with the implicit filters associated with any discretization scheme (except the
spectral method) in LES, the filtering of the solution is performed additionally in an explicit
manner. The basic numerical methods that are most commonly used are either second- or
fourth-order-accurate differencing of the convection terms (see, for example, Moin and Kim [8]
for a simulation of channel flow and the general discussion in Ferziger [9]). However, in the
choice of filters and eddy viscosity modelling in LES, the implicit filtering associated with the
discretization is not considered. Some typical explicit filters used in LES are given in Lele [4]
and Spyropoulos and Blaisdell [5]. For a general class of explicit–implicit filter, the transform
function is given (as in Spyropoulos and Blaisdell [5])
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where Ni and Ne are the number of implicit and explicit terms included in the filter and an and
bm are the corresponding coefficients. In this reference, a 5-point implicit 7-point explicit filter
based on approximating the sharp cut-off filter in a least square sense was found to be the
most efficient. However, two points need mentioning: first, one would expect

lim
k�0

ĝk�1 (6)

for the filtering to be consistent when one approaches the continuum from the discrete limit.
This is not satisfied by this filter (Equation (5)). Second, no filters can violate the Nyquist
criteria, i.e.

lim
k�k max

ĝk�0. (7)

The above-mentioned filter seems to violate this too. If the second condition is violated, it
would appear that the filter is able to generate information at the subgrid scale without any
additional effort. However, no such problems exist for the filters proposed by Lele [4].

2. RESULTS AND DISCUSSION

Some upwind schemes that have been used by us in the recent past are analysed here. The
third-order upwind scheme of Kawamura et al. [1] as given by Equation (1) has the following
equivalent wavenumber

(keq)real=
sin(kDx)(4−cos(kDx))

3Dx
,

(keq)imag=
4 sin4(kDx/2)

Dx
, (8)

Similarly, for the fifth-order upwind scheme that was used in Nair and Sengupta [7] to
simulate flow past elliptic cylinders at an angle of attack at a high Reynolds number, the
equivalent wavenumber is given by

(keq)real=
sin(kDx)(2((cos2(kDx))−6 cos(kDx)+22))

60Dx
,

(keq)imag=
16 sin6(kDx/2)

15Dx
, (9)

where (keq/k)real as given by the first equation of Equations (8) and (9) are shown in Figure 1.
Also shown in the figure are the equivalent relations for the sixth- and eighth-order CD
schemes proposed by Lele [4] as given by the second and fourth expressions in Table 1 of the
cited reference. It appears that the sixth- and eighth-order CD schemes have lesser phase error
for all values of k. The actual wavenumbers that are resolved by these schemes are depicted in
Figure 2. In this figure, (keq)real�Dx is plotted against k �Dx and the maximum resolved
spatial scale in this paper is defined as the maxima of the curves (kc)—as indicated in Figure
2. Any wavenumber for which kcBkBkmax is folded back in the wavenumber range
0BkBkc. This is the phase error arising out of discretization. The maxima are not at
the Nyquist limit and from Figure 2 one can see that the actual cut-off wavenumber is
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0.43678p/Dx for the third-order upwind scheme, while for the fifth-order scheme kc=
0.50478p/Dx. Note that the second-order CD schemes in this respect are quite inadequate as
keq=sin kDx/Dx and their use in high-Reynolds number flow would require a very large
number of grid points. The numerical dissipation of the third- and fifth-order upwind schemes
are given by the second equation of Equations (8) and (9). These dissipation functions are not
monotonically increasing functions of kDx. The maxima of the third- and fifth-order schemes
are at 0.885p and 0.917p respectively. For the sixth- and eighth-order CD scheme the cut-off
wavenumber is at 0.633243p/Dx and 0.6797p/Dx respectively. So, in a SubGrid Scale (SGS)
LES model one should use an equivalent D that should be calculated based on the suggested
kc and that way the used LES model would incorporate the information of the basic numerical
methods also. Currently this is not used in LES works.

The successfully computed flows by LES are those for which the large fraction of turbulent
energy lies below kc and is shown in Figure 3. Simulating the dissipation of turbulence energy,
the grid spacing must be at least smaller than the length scale corresponding to the peak in the
dissipation spectrum (k2). In the inertial range, the energy E(k) depends only on k and the
amount of energy passing down the cascade of scales per unit time, e, such that

E(k)=ae2/5k−5/3, (10)

as indicated by the straight line portion of the curve. In the inertial range the motions become
homogeneous and isotropic irrespective of the behaviour of motion in the large scales. Thus,
in the vicinity of the dissipative peak, the dissipation spectrum is proportional to k2

2E(k2). If
h is the Kolmogorov length scale, then it was shown by Leonard [10] that k2h$0.04 for the
pipe flow experiments reported by Laufer [11], and according to Huang and Leonard [12], a

Figure 3. Schematic log plot of turbulent kinetic energy versus the wavenumber. The various important wavenumber
limits are shown: k2 is the dissipation peak, kc is the cut-off wavenumber and kh is the Kolmogorov limit. Also note

the energy pile-up at kc in the simulation.
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resolution of the fine scales such that kch$1 should be sufficient to emulate the power law
decay of homogeneous turbulence. The proper resolution of the scales and energy transfer can
be checked by evaluating the energy spectrum of the velocity field

E(k)=
1
2
& �ûk �2 dk. (11)

Now in a simulation with a cut-off wavenumber kc, if one does not model the subgrid scale
associated with various non-linear energy transfers there will be an energy pile-up near kc—as
indicated in Figure 3 owing to aliasing and other non-linear triple interactions. This energy, if
not dissipated by an appropriate subgrid scale (SGS) model, will accumulate and modify the
slope of the energy spectrum for kBkc even for short time integration of the Navier–Stokes
equation. In well-designed explicit SGS model, the model mimics the mechanism by which the
subgrid scale removes energy from the large scale modes by suitably introducing an eddy
viscosity. While the phase information is lost in a time integration anyway because of
wavenumber truncation, one hopes that the energy spectrum is preserved. The subgrid scale
Reynolds stress is usually decomposed into

tij= (ūiūj− ūiūj)+ (ūiu %j+ ūju %i )+u %iu %j, (12)

where the first term is due to the resolved scale (k5kc), the second term gives the interaction
between the resolved and the subgrid scale and is usually responsible for the transfer of energy
from the resolved to the subgrid scale and the last term represents the interaction among
subgrid scales and causes the energy transfer from the subgrid to the resolved scale. It has been
shown by Dubois et al. [13] that a successful SGS model must retain the second term even if
the last term is not accounted for. However, it should be mentioned that for transitional flows,
the last term in Equation (12) is important. This term, which is also known as the backscatter
term, cannot be neglected for transitional flows.

The role of the SGS model is to remove the pile-up of energy in the vicinity of kc. One of
the most widely used eddy viscosity models, due to Smagorinsky [14], not only removes the
pile-up but is also found to be excessively dissipative at lower wavenumbers. In this model, the
eddy viscosity is modelled as

nt= (CsDx)2�S( �, (13)

where S( is related to the local deformation tensor. One fixes the coefficient Cs so that the
energy spectrum in the inertial subrange is modelled properly. Such a fixed constant (Cs) does
not produce desired results and various modifications are proposed. In one of the modifica-
tions based on Kraichnan’s work on 2-point closure (see Lesieur and Métais [15]), the eddy
viscosity is represented as

nt(k, kc)=0.441Ck
−3/2�E(kc)

kc

n1/2

n*t
�k

kc

�
, (14)

where Ck is the Kolmogorov constant and E(kc) is the kinetic energy at kc and n*t is the
non-dimensional eddy viscosity that reveals a cusp-like behaviour at the cut-off frequency.

The above explicit eddy viscosity model accounts for the cusp resulting from the difference
between the drain of energy from the resolved scale to the subgrid scale and the backscatter
which sends the energy in the reverse direction. It has been noted in Lesieur and Métais [15]
that the strong backscatter exists in the numerical error inverse energy, which is always present
due to the finite word length computation and this needs to be controlled by providing
appropriate feedback in the basic numerical model.
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Let us now take a look at the higher-order upwinding schemes in terms of their performance
with respect to LES. These schemes are termed as pseudo-direct simulation by Lesieur and
Métais [15] because it takes care of the subscale events implicitly by providing numerical
dissipation that is a function of wavenumber. The implications are that the introduced
imaginary part of keq in Equations (8) and (9) for the third- and fifth-order upwind schemes
respectively introduce numerical diffusion that provides the actual balance of the drain and
backscatter across the wavenumber. One can see them plotted as a function of kDx in Figure
4. In this figure, we have plotted (keq)imag of various schemes as a function of k/kc. In Figure
4(a) and (b) the third- and fifth-order upwind scheme values are plotted while in Figure 4(c)
and (d) we have shown the sixth-order CD scheme in conjunction with the fourth- and
sixth-order dissipation term. Note that a sixth-order CD scheme in conjunction with fourth-
and sixth-order dissipation term constitute the third- and fifth-order upwind schemes respec-
tively. Similarly, in Figure 4(e) and (f), the eighth-order CD scheme in conjunction with the
fourth- and sixth-order dissipation term are shown, which are once again third- and fifth-order
schemes. It is worthwhile to note that these suggested hybrid schemes of third- and fifth-order
upwinding increases the stencil size. To convert the eighth-order CD scheme to a seventh-order
upwind scheme one would need to use an eighth-order dissipation term. What is remarkable
about these figures is that the behaviour of the numerical dissipation follows the way n*t in
Equation (14) is expected to vary with k/kc. It is noted in Lesieur and Métais [15] that n*t
should be equal to 1 for k/kcB0.3 and the included numerical dissipation as shown in Figure
4(a)–(f) shows that the third-order scheme very nearly obeys this requirement and the
fifth-order scheme satisfies it exactly. Also, it becomes apparent that the CD schemes in
conjunction with sixth-order dissipation would be a most appropriate candidate for pseudo-
direct simulation. The numerical dissipation added does not show a cusp but it does show the
required monotonic increase with wavenumber all the way up to kc.

From the kc values it would appear that using the sixth- and eighth-order CD scheme would
allow one to use them for LES applications at higher Reynolds numbers. However, CD
schemes require more memory for the additional unknown derivatives. In Equation (2), with
k replaced by keq, the presence of the imaginary part of keq changes the amplitude of u to
ûk exp((keq)imagx) and thus the different wavenumber component will decay by a different
amount at a given distance.

Consider a fluid dynamical system that is excited by white noise, i.e. the system is excited at
all frequencies equally. Therefore, we can talk about an equivalent energy amplitude as
evaluated as exp((keq)imagx) at different distances from a given point. In Figure 5(a) and (b) we
have shown the normalized energy amplitude as a function of k/kc at two distances Dx and
2Dx. In these figures we have also shown the corresponding hybrid fifth-order upwind schemes
constructed from the CD schemes by adding the sixth-order dissipation term which is the same
that is used with the fifth-order upwind scheme given by Equation (9). The figures reveal that
the upwinding on these higher-order CD schemes bring their energy amplitude below the level
of fifth-order upwind schemes.

The aliasing errors appear in numerical computations whenever non-linear terms are
computed numerically. For the Navier–Stokes equation this product is furthermore differenti-
ated in the physical space—which is equivalent to multiplying such a product by an equivalent
wavenumbers (keq). As it has been pointed out by Kravchenko and Moin [16] that the aliasing
errors are more for spectral method as compared with finite difference methods because the keq

of finite difference methods are lower as compared with the spectral method. In the same way,
a lower-order accurate finite difference method will suffer less due to aliasing error than a
higher-order method. This is a penalty that one has to pay for adopting a higher-order

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 879–889 (1999)



T.K. SENGUPTA AND M.T. NAIR886

Figure 4. The numerical dissipation of some used and suggested upwind schemes plotted up to their cut-off
wavenumbers. (a) Third-order upwind scheme, (b) fifth-order upwind scheme, (c) sixth-order CD scheme with
fourth-order dissipation term, (d) sixth-order CD scheme with sixth-order dissipation terms, (e) eighth-order CD

scheme with fourth-order dissipation terms, and (f) eighth-order CD scheme with sixth-order dissipation terms.
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Figure 5. The equivalent energy height versus k/kc for various upwind schemes. ‘A’ corresponds to the sixth-order CD
with sixth-order dissipation terms and ‘B’ corresponds to the eighth-order CD with sixth-order dissipation terms. (a)

Quantities at Dx and (b) at 2Dx.
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method. Since in a finite difference method it is not straightforward to perform de-aliasing, this
problem can be handled efficiently by adopting skew symmetric differencing of the non-linear
term. This has been clearly shown by Kravchenko and Moin [16] who have used it following
the original suggestion of Arakawa [17], which was used in meteorological long time calcula-
tions for the inviscid vorticity transport equation. Note that the effect of aliasing will be
dictated by the portion of the curves, in Figure 5(a) and (b), which are to the right of k/kc=1
and with the order of the basic numerical methods increasing the aliased part increases. The
hybrid CD schemes are somewhat better than the scheme marked ‘A’ in the figures when
compared with the fifth-order scheme. One aspect about the third-order upwind scheme needs
emphasising. Although the tail portion of the curve, which can be a source of aliasing, extends
beyond k/kc=2.25 but the energy height of the tail is significantly lower than any of the other
methods shown in the figures. Further away from the source, the performance of the
third-order scheme is better in terms of the aliasing effect. Thus, the fifth-order upwind scheme
is a compromise between a sharp cut-off feature required and the least damping of the resolved
scale. There would be marginal improvement in the resolution at the cost of an increase in
storage requirement for the CD schemes, but the marked difference between the third- and
fifth-order upwind schemes would certainly prompt one to view the fifth order scheme
favourably—although based on our own experiences this scheme makes the actual computa-
tions very expensive as the time step restriction for an explicit time advancement is severe.

Finally, we would like to point out that for computations that require non-uniform grids,
the choice of the upwind method is strongly dependent on the grid itself. As it is shown in Nair
et al. [18], the third-order scheme when applied in a mapped plane may produce many
unintended effects. The biharmonic numerical dissipation of the transformed plane when
expressed in the physical plane shows alterations of the basic dynamics. In the above
mentioned reference, apart from providing the detailed reasons, some remedies have been
provided to avoid the grid dependence problem. In one of the severe criticism of the
third-order upwind schemes, Schumann [6] has pointed out that the results using third-order
schemes were not shown to be grid-independent. However, if one chooses the type of grids
used in Nair et al. [18], the results become grid-independent and detailed results are obtained
for various geometries in Nair and Sengupta [7] for elliptic cylinders and in Sengupta and Nair
[‘Unsteady flows past two-dimensional lifting bodies’ (under review for Int. J. Numer. Methods
Fluids, 1999)] for unsteady flows past NACA 0015 aerofoils. In both these references it is
shown that the adopted third- and fifth-order upwind schemes are quite capable of capturing
the Kelvin–Helmholtz instability in the shear layer transition regime.

3. CONCLUDING REMARKS

In this paper we have evaluated various currently used upwind methods for simulating
high-Reynolds number flows. A lot of effort has gone into developing subgrid-scale models for
LES that are invariably calibrated with respect to test cases with homogeneous decaying
turbulence or some benchmark DNS results. To make the comparisons meaningful, the DNS
results are also filtered. Thus, these LES methods have very rarely been tested for inhomoge-
neous shear flows—the ultimate environment where they are intended to be used. On the other
hand, the so-called pseudo-direct simulation methods have been used to compute many
practical problems but how they perform is not well explained. In this paper their role 6is-à-6is
LES has been compared in resolving various important scales. It is noted that in the process
of trying to evolve universal models for the subgrid, no attention has been paid to incorporate

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 879–889 (1999)



UPWIND SCHEMES 889

the information of kc of the basic numerical methods that has been used in the subgrid-scale
model. It has been shown that the implicit numerical dissipation of higher-order upwind
schemes mimic the required eddy viscosity that models at least the energy spectrum and this
is perhaps the reason that the methods are successful in simulating high-Reynolds number
flows. We have also pointed out that for the simulation using a higher-order upwind scheme,
special attention must be given for the grid used when resolution demands the use of a
non-uniform grid. It is seen that the higher-order compact schemes are preferable because of
their higher value of kc. But if they are to be used along with implicit dissipation terms for
pseudo-direct simulation then the gains are only marginal over a fifth-order upwind scheme in
terms of resolution. Also, they damp the resolved scales significantly as compared with the
fifth-order upwind scheme. Since the compact difference schemes also require additional
storage space for the unknown derivatives, their use will hardly pay-off. We expect that new
classes of explicit subgrid-scale models to be developed in the near future which will use
higher-order schemes for the basic numerical methods than the present day second- and
fourth-order methods. It is easy to see that a second-order method is just not sufficient—until
and unless one uses them with very fine grid resolution. Some work is already in progress in
developing explicit subgrid-scale models to be used in conjunction with higher-order dissipa-
tionless methods.
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